SmartExplorer Software Manual
Software for Smart instruments

SmartExplorer v2.0.2.0.

Please check regularly for updates.
1. Important user information

Dear customer, thank you for downloading the Kipp & Zonen Smart Explorer. It is essential that you read this manual completely for a full understanding of the proper installation and use of this software in combination with your Kipp & Zonen instrument.

We understand that no instruction manual is perfect, so should you have any comments regarding this manual we will be pleased to receive them at:

Kipp & Zonen B.V.
Delftechpark 36, 2628 XH Delft, or
P.O. Box 507, 2600 AM Delft
The Netherlands
Tel. +31 15 2755 210
support@kippzonen.com
www.kippzonen.com

Warranty and liability
Kipp & Zonen guarantees that the product delivered has been thoroughly tested to ensure that it meets its published specifications. The warranty included in the conditions of delivery is valid only if the product has been installed and used according to the instructions supplied by Kipp & Zonen.

Kipp & Zonen shall in no event be liable for incidental or consequential damages, including without limitation, lost profits, loss of income, loss of business opportunities, loss of use and other related exposures, however incurred, rising from the faulty and incorrect use of the product.

Modifications made by the user may affect the instrument performance, void the warranty, or affect the validity of the CE declaration or other approvals and compliances to applicable International Standards.

Copyright © 2019 Kipp & Zonen B.V.
All rights are reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, without authorisation by Kipp & Zonen.

Kipp & Zonen reserves the right to make changes to this manual, brochures, specifications and other product documentation without prior notice.

Publication date: August 16, 2019

Important changes:

- This version fully supports the DustIQ, SUV-A, B and E models and SG3, SGR4, RT1, PH1, PR1.
- The preferred digital output resolutions have been corrected.
- The preferred digital output explanation has been extended.
Table of contents

1. Important user information ... 2
2. Installation and configuration .. 4
 2.1. Installation for Windows 7,8 and 10 .. 4
 2.2. First start up ... 6
 2.2.1. File tab ... 6
 2.3. Setup tab ... 7
 2.3.1. Program start sub tab ... 7
 2.3.2. Advanced Options sub tab ... 8
 2.3.3. TCP/IP timeouts sub tab ... 8
 2.3.4. Headers and titles sub tab ... 9
 2.4. Configuring the connection settings .. 10
 2.5. Main window - connections ... 12
 2.5.1. Add – Remove devices .. 13
 2.6. Main Window – View Device ... 14
 2.7. Main window – Chart .. 15
 2.8. Main window – File Output ... 17
 2.9. Main window – Configuration ... 19
 2.9.1. Changing the communications parameters .. 21
 2.9.2. Changing analog output .. 22
 2.9.3. Changing device options related to output ... 23
 3. Finding an instrument with unknown communication parameters ... 24
 4. Connecting your sensor ... 26
 5. Command line options ... 27
 6. Trouble shooting ... 28

Using this table
Click on any item in the table of contents to be taken directly to the relevant page.
2. Installation and configuration

The SmartExplorer software allows you to configure a smart sensor and to collect real-time data from a sensor.

- Configuration makes it possible to configure a smart sensor ‘out of the box’ and test the smart sensor before the sensor is used in an operational network.
- Collecting data makes it possible to store data from the smart sensor in a semicolon separated CSV file. The CSV file is created at the beginning of every new day or at the beginning of the first day of the week.
- The SmartExplorer software can also be used to monitor and/or log up to 10 instruments simultaneously and works with all Smart Radiometers (SMP, SHP, SGR, SUV, RT1) and the DustIQ.

2.1. Installation for Windows 7,8 and 10

The SmartExplorer uses the dot NET 4.5 framework. For this reason the program cannot be used under Windows XP.

- Install the SmartExplorer program after downloading the latest version from the Kipp & Zonen download page.

As often executable files with an EXE file extension are blocked, the software is packaged in a compressed ZIP format. In your download folder you will find a ZIP file named smartexplorer_vxxxxx_setup.zip. Double clicking on this file will reveal the contents smartexplorer_vxxxxx_setup.exe.
The program will be installed in:

C:\ProgramData\KippZonen\SmartExplorer

After the installation you will find an icon on your desktop:

The installation program will create a work directory in the program data directory:

C:\ProgramData\KippZonen\SmartExplorer.

The program data directory on most computers is located on the C drive (please contact your network administrator for details). The program data directory is a hidden directory. Open the file browser and select the option to show hidden files and directories when you need access to this directory. This is not very likely.
2.2. First start up

After the first start of the SmartExplorer software the window below will appear:

![SmartExplorer Software Window](image)

2.3. File tab

Clicking File will show

![File Menu](image)

- **Login** is for authorized service personnel only and is not needed for normal setup and operation.
- **Reset workspace** will reset all SmartExplorer settings to factory default.
- **Save Workspace** will locally save your settings. This can be done automatically as well.
- **Print screen** does just that.
- **Exit** will close the program.
- **Restart** will restart the SmartExplorer program to put the changed settings into effect.

Note After changing the instrument with SmartExplorer running it is advised to Restart the program to force all readings and setting to be valid for the new device.

A configuration change of an instrument will automatically restart the software.
2.4. Setup tab

Clicking the Setup tab opens the window below:

2.4.1. Program start sub tab

Select the option Service mode if you want to configure smart-sensors. Select the option View only if you want to use the program as simple data-logger only.

Select the option Enable Auto Connect if the application should make a connection with sensors every time when the application is started and select the option ‘Enable logging’ to start logging every time when the application is started.

Note: the option ‘Enable logging’ is shown only when the option ‘Enable Auto Connect’ is set.

Select the option ‘Enable single instrument use’ if you want to configure sensors, change the Modbus® address and change the communication parameters of the sensor.

Check the following options after the very first installation: Service Mode, Enable Auto Connect and Enable ‘single instrument use’.

Press ‘Update’.

The changes are not applied until after a full restart. Press ‘Ok’ to make a full restart.
2.4.2. Advanced Options sub tab

Select the instruments you want to setup and/or log data from. This setting influences the Explorer view headings only.

Never save the actual configuration will make sure the SmartExplorer software always starts in the original configuration and changes are not stored.

Always save the actual configuration on exit is the preferred setting that will save all your changed settings automatically.

2.4.3. TCP/IP timeouts sub tab

When the SmartExplorer software is used to communicate with a smart instrument using the LAN and a LAN to Modbus converter specific time outs can be set.
2.4.4. Headers and titles sub tab

This simply changes the text as shown on the left bottom corner.
2.5. Configuring the connection settings

In order to connect to your Smart instrument(s): click on Setup Connection

Select Serial RTU protocol for a direct RS485 connection. Select the COM port that belongs to your USB-RS485 converter. This you can find in the Windows Device Manager. Leave the other settings unchanged if your instrument uses the Kipp & Zonen factory defaults. If you use more than one instrument, these should all have the same settings apart from the Modbus address.
One way of checking the COM port number is by using the standard Windows Device Manager.

![Device Manager](image)

Click **Confirm** to save and use the settings.

Select **TCP/IP** when the SmartExplorer software is used to communicate with a smart instrument using the LAN and a LAN to Modbus gateway.

A LAN to Modbus TCP/IP gateway converts the MODBUS RTU protocol supported by the Smart sensor or Dust IQ to the MODBUS-TCP/IP protocol.

The SmartExplorer software can then use the LAN network to communicate with the instrument via the MODBUS TCP/IP gateway. Modbus gateways are provided by many suppliers of industrial network solutions (B&B electronics MOXA, ATOP and so on).

![Setup Connection](image)

Enter the IP address as given to the converter and click confirm.
2.6. Main window - connections

Once the SmartExplorer software can communicate with the attached instruments (e.g. DustIQ and SUV-E), the following window appears:

- The program starts in Normal Network Use, meaning you can have several instruments attached to monitor
- Changing setting can be done with only one instrument attached and in **Single Instrument Use**
- Finding an instrument with unknown communication settings is only possible with one instrument attached
- Allow 5 to 10 minutes for the instrument to stabilise before really reading the measurements
- When started the first time and with a Kipp & Zonen instrument straight out of the box: 19.200, 8 Even 1 are the coms settings used and working.
2.6.1. Add – Remove devices

Clicking Add – Remove devices

Opens the following window.

For a device to show up in the list of connected devices it needs to be setup here.

Device Nr. 01 with Modbus address 1 and enabled is the default setting and works with one instrument attached that still has the Kipp & Zonen default settings.

Add more devices as needed. Making sure you fill in the right Modbus ID (a.k.a. address) and check the Enable box.

Sort list will sort the devices according to their Modbus ID.

When the Modbus ID of an instrument is changed using SmartExplorer Configuration – Configure Device this will be reflected in this list.
2.7. Main Window – View Device

Clicking on View Device will bring up the information for the first device. If there are more instruments attached, then use the arrows to select the right one.

Figure 1 Example window for a SMP6 pyranometer

Figure 2 Example window for an attached DustIQ
2.8. Main window – Chart

The chart windows shows a simple rudimentary chart of the selected devices. The scale for the sensor 1&2 average soiling ratio is on the left-hand side.

Select the devices you want to monitor and the horizontal scale.

Select a y-axis scale appropriate for the expected maximum radiation.
An in-house test with a smartphone as radiation source and SMP6 as sensor would make it logical to select 5% of output range.

Figure 2 Example output of a pyranometer and smartphones light source using 5% for y-axis

Start/clear and Stop do exactly what they say.
2.9. Main window – File Output

For logging the data gathered from the devices the File Output tab is available. Depending on the attached instruments the proper selections are available.

The instruments need to be selected under **Enable Devices**.
The measured values to be logged need to be selected under **Select items you want to log**.
For log files without Summer / Winter time issues it is advised to use UTC time (Universal Time Coordinated).
The **log interval needs** to be selected:

- 5 second average of 5 samples
- 1 second sample
- 5 second average of 15 samples
- 15 second average of 15 samples
- 1 minute average of 60 samples
- 5 minute average of 300 samples
- 15 minute average of 900 samples
- 1 hour average of 3600 samples

The **directory** where the log file will be saved needs to be selected by clicking on the **Browse** button and navigating to the right directory.
The moment when a new log file is created needs to be selected: **Manual** waits for the user to Start and Stop and Start again. A new file is created when the time between Stop and Start is more than 1 minute.

Every day starts a new file every day at 00:00 hr and **once a week** starts a new file on Sunday 00:00 hr.

After clicking **Start** will be visible on the left-hand bottom.

After clicking **Stop** a CSV file is available in the selected directory and it is named **LOGymmd-hrmm.CSV**. Where yymmdd is the date, e.g. 190504 and hrmm the time the file was created e.g. 1315 or 0000.
<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>M</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Date</td>
<td>Time</td>
<td>Channel</td>
<td>Status</td>
<td>Modbus</td>
<td>Serial Nr</td>
<td>Type</td>
<td>Sw/Hw</td>
<td>Rel Hardware</td>
<td>Rsensitivity</td>
<td>Scale factor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>09/04/2020</td>
<td>00:20:50</td>
<td>1</td>
<td>Ready</td>
<td>11-0000</td>
<td>DMPYV</td>
<td>V201</td>
<td>V002</td>
<td>14.6652</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>09/04/2020</td>
<td>00:20:50</td>
<td>2</td>
<td>Ready</td>
<td>18-0000</td>
<td>DMPYQ</td>
<td>VI120</td>
<td>V005</td>
<td>10.6561</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>09/04/2020</td>
<td>00:20:50</td>
<td>3</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>09/04/2020</td>
<td>00:20:50</td>
<td>4</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>09/04/2020</td>
<td>00:20:50</td>
<td>5</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>09/04/2020</td>
<td>00:20:50</td>
<td>6</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>09/04/2020</td>
<td>00:20:50</td>
<td>7</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>09/04/2020</td>
<td>00:20:50</td>
<td>8</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>09/04/2020</td>
<td>00:20:50</td>
<td>9</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>09/04/2020</td>
<td>00:20:50</td>
<td>10</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 3 Sample logged data
2.10. Main window – Configuration

Clicking the Configuration tab shows the current communications settings.

The place to change the instrument settings.

Click on Configure Device and a warning is shown. Read carefully.
Go back to the first Connections tab to change to **Single Instrument Use** when the baud rate or parity needs to be changed too. Modbus address changes work also in Normal Network Use.

For changing just the Modbus address select **Change Modbus Address** and select the new Modbus address.

Otherwise select the changes needed followed by Next.
2.10.1. Changing the communications parameters

If OK with the changes click Update.

After updating the instrument will be reset and take about a minute to be ready again. The communication parameters of the SmartExplorer software have been changed accordingly and a working Connections tab should appear. When finished the program can be closed.
2.10.2. Changing analog output

For the instruments that offer a 0-1V output or 4-20mA the upper and lower range can be changed.

Click on the Change Function and Analog output range checkbox and change the upper and lower range to your wishes. Click Next until you get to the Update tab and click Update.

Note: The settings will be updated and the instrument will be reset. This can take a minute or more.
2.10.3. Changing device options related to output

This tab allows you to select if changes to the mentioned settings are allowed once installed in the field.

A checkmark in front of the setting under the header Remote Controllable makes it possible to change the setting in the field.

A checkmark after the setting under the header Value at power on indicates the setting when the unit is powered Off and On again.

Round When selected the last digit is rounded and not discarded. Default [] at power on.

Auto Range Depending on the measurement the Resolution is changed. Not advised as one needs to read an extra Modbus register being register 4 – Scale factor. (see instrument manual) to be able to calculate the real value.

Resolution For most instruments 0.1W/m² but SUV A, B and E sensors need a higher resolution as the total amount of UV radiation is lower. Depending on the sensor up to 8 selections are offered.

Preferred resolution

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Resolution Range</th>
<th>Default Resolution</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>SGR</td>
<td>0-500 W/m²</td>
<td>1 W/m²</td>
<td>no action</td>
</tr>
<tr>
<td>SMP, SHP</td>
<td>0-2000 W/m²</td>
<td>1 W/m²</td>
<td>no action</td>
</tr>
<tr>
<td>SUV-B</td>
<td>0-90 W/m²</td>
<td>0.1 W/m²</td>
<td>divide measurement by 10</td>
</tr>
<tr>
<td>SUV-B</td>
<td>0 to 9 W/m²</td>
<td>1 mW/m²</td>
<td>divide measurement by 1000</td>
</tr>
<tr>
<td>SUV-E</td>
<td>0 to 9 W/m²</td>
<td>0.1 mW/m²</td>
<td>divide measurement by 10000</td>
</tr>
</tbody>
</table>

Example: An SUV-B Modbus register 6 readout of 7540 equals 7540/1000 = 7.540 W/m²

When a wrong resolution is selected and update clicked the following warning will appear.

Tracking With tracking on, the instrument will closely follow larger signal changes and suppress very small changes due to noise or fast and small atmospheric changes. Default [] at power on

Fast Response Improves the response of the sensor. Default [] at power on for all sensors apart from RT1 and all SUV models as these are fast already and Fast Response could influence the desired output.
3. Finding an instrument with unknown communication parameters

When unsure of the current communication settings of your Kipp & Zonen Smart instrument and unable to connect, there are two ways to try and find a single connected instrument.

First change to Single Instrument Use in the Connections tab.

When the communication parameters are known and properly setup and only the Modbus ID is unknown, a Send Broadcast will find the attached instrument and show it.

If no instrument is found then most likely also one of the communication parameters is wrong or unknown.

To always find a Smart instrument, there is the Start From Boot procedure that involves shortly switching the power removing the cable from the instrument to perform a Power Off – Power On.

Click on Start From Boot and the following window will appear:

Follow the instructions given and the instrument will be found.
Modbus ID (or address) of the device is 4. After **Start From Boot** the ID temporary is 1.

After about a minute the Connections tab will show reliable measurement results and the communication parameters setup of the instrument can be seen, written down and when needed, be changed using the **Configuration** tab.

Once the instrument has been detected the following temporary settings are used: baud rate 19200, 8 bit, even, 1 stop bit.

Note: After connecting the instrument using **Start From Boot** and being finished with observation or configuration the instrument must be powered down for at least 10 seconds and then powered up again to be connected in a normal way.
4. Connecting your sensor

Please follow the instructions that came with your instrument to properly attach the wire ends of the cable to your USB-RS485 converter or LAN to RS485 converter.

For this you will also need the manual that came with your converter.

RT1 rooftop sensor with black data cable (early models)

- **Electrical Connection**
 - **Wire**: Yellow
 - **Function**: Modbus® RS-485
 - **Connect with**: Data +
 - **Wire**: Grey
 - **Function**: Modbus® RS-485
 - **Connect with**: Data -
 - **Wire**: Green
 - **Function**: Modbus® common / Ground
 - **Wire**: Red
 - **Function**: Power 5 to 30 VDC (12 V recommended) 60 mW max.
 - **Wire**: Blue
 - **Function**: Power ground
 - **Wire**: Shield
 - **Function**: Housing
 - **Connect with**: Ground *

*Connect to ground if Radiometer not grounded

RT1 rooftop sensor with yellow data cable (later models)

- **Electrical Connection**
 - **Wire**: Yellow
 - **Function**: Modbus® RS-485
 - **Connect with**: Data +
 - **Wire**: Grey
 - **Function**: Modbus® RS-485
 - **Connect with**: Data -
 - **Wire**: Green
 - **Function**: Modbus® common / Ground
 - **Wire**: White
 - **Function**: Power 5 to 30 VDC (12 V recommended) 60 mW max.
 - **Wire**: Black
 - **Function**: Power ground
 - **Wire**: Shield
 - **Function**: Housing
 - **Connect with**: Ground *

*Connect to ground if Radiometer not grounded

DustIQ

- **Cable connection**
 - **Wire**: Yellow
 - **Function**: Modbus® RS-485
 - **Connect with**: Data +
 - **Wire**: Grey
 - **Function**: Modbus® RS-485
 - **Connect with**: Data -
 - **Wire**: White
 - **Function**: Power 12 to 30 VDC
 - **Wire**: Black
 - **Function**: Power ground
 - **Wire**: Blue
 - **Function**: Modbus® common / Ground
 - **Connect with**: Ground
 - **Wire**: Shield
 - **Function**: Housing
 - **Connect with**: Ground *

*Connect to ground if DustIQ is not grounded

All SMP, SGR, SHP, SUV models

- **Radiometer Connection**
 - **Wire**: Green
 - **Function**: Modbus® RS-485
 - **Connect with**: Data +
 - **Wire**: Brown
 - **Function**: Modbus® RS-485
 - **Connect with**: Data -
 - **Wire**: Yellow
 - **Function**: Modbus® RS-485
 - **Connect with**: Analogue out
 - **Wire**: Grey
 - **Function**: Modbus® RS-485
 - **Connect with**: Analogue ground
 - **Wire**: White
 - **Function**: Power 5 to 30 VDC (12 V recommended)
 - **Wire**: Black
 - **Function**: Power ground
 - **Wire**: Blue
 - **Function**: Modbus® common / Ground
 - **Wire**: Shield
 - **Function**: Housing
 - **Connect with**: Ground *

*Connect to ground if Radiometer not grounded

Mit Ende verbinden, wenn das Radiometer nicht接地 ist
Relè à l’arrière si le radiomètre n’est pas connecté
Conectar a tierra si el radiomètre no lo está
5. Command line options

For advanced users.

The SmartExplorer software can be started from the Command prompt (DOS box) and use previously saved settings in a Workspace file. Even several instances can be started independently when needed. This can be done manually or automated using the Task Scheduler built in Windows.

Open a Command prompt in Windows.

![Command Prompt](image)

Use the CD command to go to the right directory

E.g. `cd "Program Files (x86)\KippZonen\SmartExplorer"`

Then type `SmartExplorer filename.txt` where `filename.txt` has the complete path to the saved and optionally copied workspace file.

Normally the workspace is saved in: "C:\ProgramData\KippZonen\SmartExplorer".

Windows (C) > ProgramData > KippZonen > SmartExplorer >

![Directory Structure](image)

The SmartExplorer program will then start and open with the settings as saved in the used workspace.
6. Trouble shooting

Q: I get no connection whatsoever with my instrument.

A: - Did you check the power to the instrument?
 - Are the data signals connected correctly? Kipp prefers to use Data + and – as A, A’ and B, B’ are not used consistently between suppliers. When in doubt, a voltmeter can help as the Data + input of the converter should have a slight higher voltage than the Data – input.
 - Are you using the right COM port?
 - Did you try Start from boot?
 - Did you restart the SmartExplorer software?
 - Do you have another instrument that works?

Q: Why am I getting strange results for “Value at power on” and my current setting?

A: Did you use Start From Boot and continued working without 10 seconds Power down and Power On? Then power off, wait more than 10 seconds and power on again. The unit then uses the stored power on settings.

When using an industry standard USB-RS485 converter he following connections need to be made.

Figure 4 DustIQ example but other instruments are often the same. Check the instrument’s manual.
Kipp & Zonen B.V.
Delftechpark 36
2628 XH Delft
The Netherlands
+31 15 2755 210
info@kippzonen.com
www.kippzonen.com

Please visit our website for the contact details of our worldwide network of sales offices, sales representatives and distributors.